- Endomorphisme diagonalisable
-
Encyclopédie Universelle. 2012.
● Endomorphisme diagonalisable endomorphisme pour lequel il existe une base dans laquelle la matrice associée de l'endomorphisme est diagonale.
Encyclopédie Universelle. 2012.
diagonalisable — ● diagonalisable adjectif Endomorphisme diagonalisable, endomorphisme pour lequel il existe une base dans laquelle la matrice associée de l endomorphisme est diagonale. Matrice diagonalisable, matrice carrée qui admet une matrice semblable… … Encyclopédie Universelle
Endomorphisme Nilpotent — Exemple d image d une base par un endomorphisme nilpotent en dimension 3. Un endomorphisme nilpotent est un morphisme d un objet mathématique sur lui même, qui, composé par lui même un nombre suffisant de fois, donne l application nulle. Un… … Wikipédia en Français
Endomorphisme nilpotent — Exemple d image d une base par un endomorphisme nilpotent en dimension 3. Un endomorphisme nilpotent est un morphisme d un objet mathématique sur lui même, qui, composé par lui même un nombre suffisant de fois, donne le morphisme nul. C’est donc… … Wikipédia en Français
Endomorphisme Normal — Définition Soit un espace préhilbertien, réel ou complexe. Soit un endomorphisme de admettant un adjoint . On dit que est normal si … Wikipédia en Français
Endomorphisme Linéaire — En mathématiques, un endomorphisme linéaire ou endomorphisme d espace vectoriel ou endomorphisme est une application linéaire d un espace vectoriel E dans lui même. L ensemble des endomorphismes d un espace vectoriel E est habituellement noté… … Wikipédia en Français
Endomorphisme lineaire — Endomorphisme linéaire En mathématiques, un endomorphisme linéaire ou endomorphisme d espace vectoriel ou endomorphisme est une application linéaire d un espace vectoriel E dans lui même. L ensemble des endomorphismes d un espace vectoriel E est… … Wikipédia en Français
Diagonalisable — Matrice diagonalisable En algèbre linéaire, une matrice carrée M d ordre n ( ) à coefficients dans un corps commutatif K, est dite diagonalisable si elle est semblable à une matrice diagonale, c est à dire s il existe une matrice inversible P et… … Wikipédia en Français
Endomorphisme autoadjoint — En mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme d espace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme… … Wikipédia en Français
Endomorphisme normal — Un endomorphisme normal est un opérateur d un espace de Hilbert qui commute avec son adjoint. Sommaire 1 Définition 2 Exemples 3 Propriétés 4 Article connexe … Wikipédia en Français
Endomorphisme linéaire — En mathématiques, un endomorphisme linéaire ou endomorphisme d espace vectoriel est une application linéaire d un espace vectoriel dans lui même. L ensemble des endomorphismes d un espace vectoriel E est habituellement noté End(E) ou . L ensemble … Wikipédia en Français